Solutions- Medium Test

Solutions for questions \ to \{:

- (a): Per capita production of Amul butter is least in 1-15. Since, the population maximum in 1-15.
- . (d): The per capita production of Nutralite Butter was the most in ۲۰۱۳. (by observation)
- *. (C) : At

٤.(C) ؛

Solutions for questions o to A:

7. 1107 ·= A · · · (1+r)7

R=**r**•percent

v. (a): Total Market in $Y \cdot Y = 1.1 \times 1.1 \times 110 Y = 15 \cdots (approx.)$

So a percentage share of Ca in Y-Y2 = $\frac{\xi \cdot \circ \cdot}{1 \cdot \xi \cdot \cdot}$ / $\frac{\xi \cdot \circ}{1 \cdot$

A. (d): Aswe do not know that what part of the market share of C_1 , C_7 , C_9 has been eaten by C_{9} in what proportion. So, we cannot find the answer.

Solutions for questions 4 to 17:

- (c): For this we need to minimize the cost for each of the task, then we will find the minimum cost.
 Minimum cost = \$ ٢٣ (Child ¿ doing Going for Morning walk) + \$ ٣٧ (Child o doing Exercise) + \$ ٢٨ (Child o doing home work) + \$ ٢١ (Child r drink Milk) + \$ ٣٤ (Child r family work) = \$ ١٤٣
- ۱٠. (b) : For this we need to maximize the cost each of the task، then we will find the maximum cost.

 Maximum Cost = \$٣٦ (Child ه doing Going for Morning walk) + \$٥٧ (Child r doing Exercise) +

 \$٥٥ (Child r doing home work) + \$٥٥ (Child r drink Milk) + \$٥١ (Child ٤ family work) = \$٢٥٤
- ۱۱. (a)

Note:

C) Chosen (Doing First works)

Cy Chosen y (Doing remaining wworks)

GM Going for Morning walk

EX Exercise

CH Completing their Homework

DM Drinking Milk

AF Assisting in Family work

ToS Total Cost

C١	C۲	GM	EX	CH	DM	AF	ToS
١	۲	٣٥	٤٨	٥٥	71	٣٥	198
١	٣	٣٥	٤٨	٥٢	*1	٣٤	190

١	٤	٣٥	٤٨	٣٨	**	01	4.4
١	٥	٣٥	٤٨	٤٤	٤٢	٤٧	717
۲	١	٣١	٤٢	۲۸	٥٥	*1	١٨٢
٣	١	٤٤	٥٧	۲۸	00	77	۲۱۰
٤	١	74	٣٥	۲۸	00	77	177
٥	١	٣٦	۳۷	۲۸	00	۲٦	١٨٢
۲	٣	٣١	٤٢	٥٢	*1	٣٤	۱۸٥
۲	٤	٣١	٤٢	٣٨	**	٥١	199
۲	٥	٣١	٤٢	٤٤	٤٢	٤٧	۲٠٦
٣	۲	٤٤	٥٧	٥٥	71	٣٥	717
٤	۲	74	٣٥	٥٥	۲۱	٣٥	179
٥	۲	٣٦	۴٧	٥٥	۲۱	٣٥	۱۸٤
٣	٤	٤٤	٥٧	۴۸	**	٥١	***
٣	٥	٤٤	٥٧	٤٤	٤٢	٤٧	774
٤	٣	74	٣٥	٥٢	77	٣٤	17+
٥	٣	٣٦	٣٧	٥٢	77	٣٤	1/10
٤	٥	74	٣٥	٤٤	٤٢	٤٧	191
٥	٤	٣٦	۴٧	۴۸	**	٥١	199

Choosing Child s and Child s will be the best option for John.

۱۲. (c) : The answer can be obtained directly by increasing the answer in question ۱۱ by ه ۰٪، as all the Children increase the cost by ه ۰٪ and hence the total cost will increase by ه ۰٪ only.

 $\label{eq:continuity} \underbrace{\text{From}_{\xi \xi}(I)}_{\text{Y}=\xi \lambda}, \text{ number of average male students}$

From (III), number of excellent students = $\Upsilon \xi \cdot /\Upsilon =$

Number of excellent female = $17 \cdot - 0 \cdot = 7 \cdot$

١٢.

Erom th	oco calcul	ations, we Performan	got the f	allowing
table'. "	F	onowing		
		Total		
	Average	Good	Excellent	

Male	٤٨	٤٦	٥٠	1 2 2
Fe male	1.4	٨	٧٠	97
Total	٦٦	٥٤	14.	78.

- 1π . (b): From the above table, it is clear that number of male good students = $\xi \tau$
- 18. (c): From the above table α it is clear that number of female good students = Δ
- ۱۵. (d): Number offemalegoodstudents=۸ Number of malesaveragestudents=٤٨ Required ratio =٨: ٤٨=١: ٦
- Number of female excellent students = 170 Number of female excellent students = 170 Required fraction

Solutions for question 17 to 17:

- VV. (b): $RY \rightarrow DY \rightarrow DRY$
- $\text{NA.} \quad (d): Number of refineries = \texttt{T}$

Number ofdepots=v

Number of districts=4

Therefore, number of possible ways to send petrol from any refinery to any district is $\tau \times v \times \tau = \tau v \lambda$.

(b): If youlook for large figure syou would find them in both tables in Do.

= 1197. . .

 $Y \cdot . (b) : R \rightarrow D \rightarrow DRY$

The leastcosttoreachtoAABisforAE. Andthat is BD to AE is zero.