τ. (c): Suppose the hound catches the rabbit in t minutes
 Number of jumps by the rabbit = rot & distance covered = τ · × rot = ν · · · t m .
 Similarly Distance covered by hound = τot × τ · = ν o · · t cm .

Now, $10 \cdot \cdot \cdot t - v \cdot \cdot t = v \cdot \cdot \cdot cm \text{ or } t = v \circ min$.

٤

 τ . (c): Let there be x litres of wine in the beginning

$$\begin{array}{l}
\text{æx- } 8 \ddot{0} \\
\text{èç x } \text{ø} \div \\
\text{⇒x = } \text{\wedge} \cdot \text{litres}
\end{array}$$

 ϵ . (c): Let A = abc and B = cba

Therefore, $B - A = \cdots + b + a - (\cdots + b + c) = 44(c - a)$. B - A is a multiple of y.

Therefore, $c - a = v(a, c)(1, \lambda) or(Y, A)$.

Hence, number is between 1. A to 19A or Y.9 to Y99.

(a): Total S.P. will be

$$A : \underbrace{X}_{1 \cdot r} \underbrace{\hat{e}_{X+1} \hat{u}_{1} r}_{1 \cdot r} = 1 \land . \land A \land X + \xi . \land X + 1 q . r}_{1 \cdot r}$$

$$C.P. = \frac{e^{X_{u}}}{\hat{g}_{\Lambda}} \hat{u}_{u}^{X}$$

Profit = $rr. \tau AX + 19. r - rvX = 19. r - r.rrX$

٦. (d)

 $PX = (P - \cdot \cdot \cdot \cdot)(X + \cdot \cdot \cdot) = (P + \cdot \cdot \cdot \cdot)(X - \cdot \cdot \cdot \cdot)$

Solving $x = 1 \cdots$

v. (b): Volume of smaller cone

$$= 1p(r)r^{q} = rvp$$

Volume of large cone $\frac{1}{r}p^{(0)}$ $\gamma = 1$

 \Rightarrow Volume of the solid = 170 π - 70π = 9 Λ π

۸. (c) : Let the speed of A be x km /hr and spee**B b** ${\bf 6}$ y km /hr ${\bf 6}$ then :

$$\overset{\circ \circ}{\mathsf{X}} = \overset{\circ \circ}{\mathsf{y}} - \overset{\mathsf{I}}{\mathsf{y}} \qquad \ldots \qquad (\mathsf{I})$$

Also,
$$\overset{\circ \circ}{X} \overset{= \circ 1}{V} - \overset{1}{1}$$
 (Y)

On solving both equation (1) & (7) we get x = 11 km/hr and $y = 1 \cdot \text{km/hr}$.

(a): Let the distance be x km and speed be y km/hr and t be the time in hours. Then the equation will be x = yt

Therefore
$$\frac{\delta}{y} + \frac{[x - \delta \cdot]}{[x \cdot y \cdot / \delta]} = t+3$$
(Y)

Therefore
$$\frac{\circ}{y} + \frac{[x - \circ \cdot]}{ry / \circ} = t+3$$
(r)

Also $\frac{\cdot \cdot \cdot}{y} + \frac{x - \cdot \cdot \cdot}{ry / \circ} = t+2$ (r)

On solving the above equations, we get speed is m/hr time is τ hrs, and distance is $\tau \cdot \cdot \cdot$ km.

۱۰. (b):

I	II	III
Y:0	٣ : ٤	٤:٥

Hence new ratio

11. (d):

Area of \triangle ABE = \vee cm \vee

Area of ABEF = \ \ cm \

Area of ABCD = \ \ \x \ \x = o \ cm \

 $(As CE = \forall \times BE) = 0 \exists cm \forall$

NY.(a): Let oil in containers be A & B.

After st operation

Container A = • . ¿ A

Container B = •. ¬ A + B

After and operation

Container $A = \cdot \cdot \cdot \xi A + \cdot \cdot \cdot \tau A + \cdot \cdot \circ B$

Container $B = \cdot . \forall A + \cdot . \circ B$

$$=(\underbrace{\cdot . vA + \cdot . \circ B}) = (\underbrace{\cdot . vA + \cdot . \circ B})$$

$$1 \cdot . \tau A = \tau B P \qquad \frac{A}{\circ} \quad \frac{B = }{\stackrel{\xi}{\circ}}$$

$$1.7A = 7BP$$
 $\frac{A}{a}$ $\frac{B}{5}$

r. (b): Let n = the number of terms.

Then
$$\int_{1}^{1} \int_{0}^{1} \int_{0}^{1}$$

$$\Rightarrow \frac{\xi \cdot V}{17} = YV \Rightarrow \frac{1}{17} \qquad = \frac{\xi \cdot V}{YV} = 11$$

Let d be the common difference.

Then $-\frac{1}{\Lambda}$ (= the eleventh term)= $1 \vee + 1 \cdot d$

$$\Rightarrow 10 = -d \qquad \frac{177}{\Lambda} - 17 = -\frac{770}{\Lambda}$$

$$\Rightarrow$$
d $-\frac{1}{2}$

 $18. (d): Since M is the midpoint of side PQ. the length of MQ is <math>\tau$.

Hence, the area of \triangle MQR = $1 \times 7 \times \xi = \xi$.

۲

Also area of Δ NSR = ϵ . Thus, the unshaded area of the figure = ϵ + ϵ = A .

Hence, the area of quadrilateral PMRN

= Area of the square PQRS – The unshaded area of the figure

$$A = A - \Gamma I = A$$

10. (b): Let speeds of $P_i Q \& R be P_i Q \& R km/hr respectively$.

Thus $\xi P = \tau R$

$$= \begin{array}{ccc} P & 1 = & & & \\ R & Y & & & \\ = \circ Q = \xi R = Q & 4 = & & \\ R & \circ & & & \end{array}$$

From (1) & (٢).

$$= \frac{P/R}{Q/R} = \frac{1}{2} / \frac{5}{6}$$

$$= P = 0$$

 $\forall \lambda \in (A - Y) = \cdot \cdot \cdot (B + Y) \cdot i \cdot e \cdot A - \cdot \cdot \cdot B = YA$

And $(B - \varepsilon \cdot) = \cdot \cdot \cdot (A + \varepsilon \cdot)$, i.e. $B - \cdot \cdot \cdot \varepsilon A = \circ \tau$

Solving we get, A = Rs. ٦٠

v. (a): Given quadratic equation $xy + ax + b = \cdot$

Then product of roots $\alpha\beta = b$

Sum of roots $\alpha + \beta = -a$

Next quadratic equation bx $y + ax + y = \cdot$

Then product of roots $\frac{1}{b} = \frac{1}{\alpha \beta}$

Hence, clearly by visualising options

New roots we will be α and α

IA. (b): Average salary of each temporary employee is IV.

```
، . . . temporary employee ،
     Total salary = \(\cdot\)....
     let teaching departement = Rs. x / staff and cleaning department salary = x
     Now, \neg \cdot \cdot (X + ) \cdot \cdot \cdot ) + \xi \cdot \cdot (X) = \neg \cdot \cdot \cdot \cdot \cdot \cdot \cdot
        X=0ξ.
     Hence answer 1 · · = 0 { · + \ · ·
     =75.
19. (C): All when divided by Ar leaves a remainder + I (as Ar is prime) Hence the total remainder is
     + 1 \times \Lambda 1 = \Lambda 1.
Y.. (c): Let the number of men be Y...
     Then. Men × Time = Work
     \cdots \times 1 = 1 \cdots unit
     Amount of work increased by •• %.
     So. New work = 10. unit
     as the planned time remains same i.e. \
     Then men required will be vo. i.e. a or more workers but since new workers are vo/, more
     efficient i. e \underset{\leftarrow}{\overset{\bullet}{\smile}} times efficient as existing workers .
     Actual number of workers = 0 · = ٤ · men
     Required percent \frac{\xi}{1} 1 \cdot \cdot \cdot = \xi \cdot 1.
```